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ORIGINAL ARTICLE

Energy acquisition and allocation to the gonadal development of Cynoscion
leiachus (Perciformes, Sciaenidae) in a tropical Brazilian bay
José Paulo do Carmo Silvaa, Marcus Rodrigues da Costaa,b and Francisco Gerson Araújo a

aLaboratório de Ecologia de Peixes, Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil;
bLaboratório de Ecopesca, Departamento de Biologia Marinha, Universidade Federal Fluminense, Campus Valonguinho-Niterói, Niterói,
Brazil

ABSTRACT
The process of energy acquisition and allocation to the gonadal development involves the use
of reserves obtained from the food intake and/or stored in different parts of the body. Some fish
species acquire and store energy prior the spawning season (capital breeders). For others
species, the energy acquisition through by feeding activity continues actively throughout the
spawning season (income breeders). This process of acquisition/allocation of energy to
gonadal development was investigated for Cynoscion leiarchus an important fishery resource
in southeastern Brazil. Monthly measurements of the gonadosomatic, hepatosomatic,
condition factor and stomach repletion indices were carried out. Size at the first maturation
was also assessed. Fish, mainly teleosts, were the main source of energy in the diet
suggesting a carnivorous behaviour. We found evidences of use of stored body energy
reserves during the spawning period, associated concomitantly with a decrease of feeding
activity, suggesting a capital breeder. However, the wide spawning season, together with
asynchronic oocyte development and indeterminate fecundity (typical of income breeders)
suggest that the mixed-breeder strategy should be more suitable for this species. The high
plasticity regarding the capital-income breeder strategy during the reproductive cycle of the
genus Cynoscion is discussed.
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Introduction

Feeding activity includes complex mechanisms
whereby species get energy that is distributed mainly
for growth (addition of body mass), for maintenance
of the basal metabolism that are lost as heat, and for
the reproductive process (Wootton 1990; Simon et al.
2009). The acquisition, storage and use energy or nutri-
ents across the annual cycle are key components of life
history strategy and important determinants of lifetime
fitness (Williams et al. 2017). Energy allocation can vary,
depending on the life history strategy of a fish species.
The amount of food ingested during the spawning
season may partially offset the cost of reproduction
(Aristizabal 2007) since that the reproductive process
comprises several endocrine and metabolic changes
that mobilize and re-allocate both materials and
energy (Jobling 1995).

The maturation of the gonads and reproductive
activity involves the use of energy reserves obtained
from the food intake and stored in different parts of
the body (Henderson et al. 1996; Aristizabal 2007).
During the reproductive cycle, the availability of

suitable food at appropriate times is one of the most
important exogenous factors for the reproductive
success. In addition, reproductive features such as indi-
vidual fecundity and egg size are influenced by the
availability and quality of energetic reserves, or by
food intake (Tyler and Calow 1985), which directly
affect spawners condition, and at the same time deter-
mine the maturation of the individuals (Saborido-Rey
and Kjesbu 2009).

The dynamics of energy allocation involves different
roles of lipids, proteins and other components in fish
tissues as energy reserves. Lipids play an important
role as regulators of body density, cellular metabolism
and reproduction (Love 1980; Chellappa et al. 1989;
Jonsson et al. 1997; Blanchard et al. 2005) being
closely related to ovary development, fecundity, fertili-
zation, egg quality and hatching rates (Shearer and
Swanson 2000; Hendry et al. 2001; Kurita et al. 2003;
Lambert et al. 2003). It is also widely known that egg-
shell and egg yolk proteins use the liver as their main
site of synthesis and these substances are then trans-
ported to the oocyte for uptake (Arukwe and Goksoyr
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2003). In addition, the energy stored in muscular tissue
as body proteins is used to ovary growth (Tyler and
Calow 1985; Black and Love 1986).

Marine teleosts develop complex life history strat-
egies searching for food to reproduce and to make feas-
ible their life cycles in rich and dynamic environments
such as coastal systems. Often, they use the stable con-
ditions of the inner platform as grounds for reproduc-
tion, growth and feeding (Godefroid et al. 2001; Robert
and Chaves 2001; Fávaro et al. 2003; Branco et al. 2005;
Robert et al. 2007). During the spawning season, some
teleosts species exhibits a cessation or reduction in
feeding activity (capital breeders). Consequently, the
energy cost with the stages of gametogenesis and
behavioural activities associated with reproduction
must be met from reserves built up when the fish were
actively feeding (McBride et al. 2015). This pattern is
characteristic of many species that exhibit total spaw-
ners or species with determinate fecundity (Albo-Puig-
server et al. 2017; Wright et al. 2017). Since stored
energy requires maintenance itself, capital breeders
are not maximizing conversion efficiency (Jönsson
1997), although, storing resources by adults is an advan-
tage for their offsprings (Reznick and Braun 1987).

There are other teleosts (income breeders), in which
feeding continues actively throughout the reproduc-
tive cycle and the energy cost with reproduction is
acquired by feeding activity or by transfer from the
reserves if income from feedings is insufficient
(Wootton and Smith 2014). Asynchronic oocyte devel-
opment, batch spawning and indeterminate fecundity
are reproductive traits of many income breeders fish
species (Villegas-Ríos et al. 2014; Grande et al. 2016;
Albo-Puigserver et al. 2017; Ashida et al. 2017). These
species can show a rapid response relative to nutri-
tional control of oogenesis and are metabolically
efficient, since they have the advantage of fine-
tuning reproductive output relative to the current
environment pertaining to both maternal condition
and potential survival of the offspring (McBride et al.
2015). Some species may adjust their reproductive
investment to maximize their fitness (Roff 2002) and
breeding patterns are not limited to capital or
income types. It is also possible that an intermediate
type may exist, such as the mixed-breeding that can
supply egg production with stored energy and
energy obtained during the reproductive activity
(McBride et al. 2015; Dhurmeea et al. 2018).

Condition factor, hepatosomatic and gonadosomatic
indices have been used to assess the energy storage
process and to interpret the direct mobilization of that
energy from liver and muscle to gonadal development
(Komova 2002; Blanchard et al. 2003; Lambert et al.

2003; Dominguez-Petit and Saborido-Rey 2010; Alonso-
Fernandez and Saborido-Rey 2012). In relation to energy
acquisition, the stomach weight index (repletion index)
allows to assess spatial and temporal variations in
feeding activity, revealing the dynamic of energy input
in fish (Guedes et al. 2004; Martins et al. 2005). Therefore,
the use of these indices allows to assess the process of
energy transfer encompassing from the food intake
(beginning) to the gonadal development (end of pipe).

Fish of the family Sciaenidae, especially the genus
Cynoscion are abundant in tropical and subtropical
coastal systems and have complex strategy for energy
acquisition and allocation (Brown-Peterson et al. 1988;
Taylor and Villoso 1994; Vieira and Haimovici 1997;
Brown-Peterson and Warren 2001; Marcano and Alió
2001; Brown-Peterson et al. 2002; Militelli and Macchi
2006; Gherard et al. 2013). The smooth weakfish Cynos-
cion leiarchus (Curvier, 1830) is an euryhaline fish species
with wide range of geographical distribution, from
Panamá to southern Brazil (Froese and Pauly 2018)
that uses different coastal environments during its life
cycle (Chaves and Umbria 2003; Araújo et al. 2006;
Pereira et al. 2015). In the Sepetiba Bay (22°54′–23°
04′S, 43°34′–44°10′W), a 450 km2 embayment on the
coast of the Rio de Janeiro State in southeastern Brazil,
this species ranks among the most abundant fish
species, occurring mainly in the outer bay zone
(Araújo et al. 2006, 2017) that has waters predominantly
polyhaline (salinity average = 30), and the mean temp-
erature ranges between 21.5°C in winter and 27°C in
summer (Araújo et al. 2002). Cynoscion leiarchus feeds
mainly on fishes (Chaves and Umbria 2003; Guedes
et al. 2015). There is no available information on repro-
ductive migration but juveniles of this species were
recorded in small numbers in the Sepetiba Bay (Pes-
sanha and Araújo 2003; Pereira et al. 2015). Spawnings
occur in the inner platform near estuarine semi-
enclosed systems, but individuals with post-ovulatory
follicles were recorded in the outer zone of the bay
(Silva et al. 2016). This species is an important fishery
resource, with catches showing a trend towards stability
in 2008 and 2010 (910–948 t) (MPA, 2012). Some
relationships between energy resources (feeding/body
reserves) and the reproductive process based on the
condition factor, eggs size and fecundity have been
reported for Cynoscion species (e.g. Lowerre-Barbieri
et al. 1996; Roumillat and Brouwer 2004; Militelli and
Macchi 2006). However, no information was available
on the energy acquisition and allocation to the repro-
ductive process of these species yet.

The objective of this study was to investigate repro-
ductive and feeding traits of C. leiarchus in a tropical Bra-
zilian bay, evaluating the process of acquisition, allocation
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and transfer of energy to reproductive cells development.
We assessed condition factor, hepatosomatic and gona-
dosomatic indices and the stomach repletion index. The
tested hypothesis was that this species is able to compen-
sate for inadequate energy depositswith concurrent food
intake during the spawning season in order tomaximiza-
tion the oocyte production.

Materials and methods

Fish collection and handling

Thirty fish were collected monthly from July 2013 to
June 2014, from catches carried out by the artisanal
fleet that operates in the Sepetiba Bay. Fish were col-
lected by gill nets of 1500 m long × 3 m high × 3
three different mesh size panel (35, 40 and 45 mm
between opposite knots).

The collected fish were preserved in ice, and the
total length – TL (in mm) and the body mass – BM (in
0.1 g) were taken. A ventral incision was made to
expose the stomach, gonads and liver. Stomachs
were removed, weighed (SM) to the nearest 0.01 g
for determination of stomach repletion index (RI).
Food items were identified under a stereomicroscope.
Each identified food item was separated, counted
and weighted to the nearest 0.001 g.

Gonads were removed for sex determination and
macroscopic classification of the gonadal development
phases, andweighed (GM) to the nearest 0.01 g for deter-
minationof the gonadosomatic index (GSI). Identification
of the gonadalmaturation phases followed the criteria of
Brown-Peterson et al. (2011). Macroscopy gonadal
phases were categorized according to shape, size, mass,
colour and vascularization. This classification included
reproductively inactive (immature, regenerating) and
reproductively active (developing, spawning capable,
regressing) to reduce the chance of error in the identifi-
cation of individual phases. The liver was removed and
weighed (LM) to the nearest 0.01 g for determination of
hepatosomatic index (HSI).

Size structure

Length-frequency distributions of the individuals
grouped in 30 mm TL size classes were analysed. The
sex ratio was assessed for the different size classes. A
chi-square test (χ2), with level of significance of 5%,
was used to compare the sex ratio.

Gonadal development phases

Size at first maturation (L50) was determined for each
sex and was used for discriminating the inactive

individuals from those in process of reproduction.
The proportion of individuals in the reproductive
process (% mature individuals) included individuals in
developing, spawning capable and regressing. These
were assigned as already reached the reproductive
process (adults). A logistic curve was fitted to the
dataset for estimation of the size at first maturation
(L50) and size when all individuals reached maturity
(L100). This curve was adjusted through a non-linear
adjustment model that uses an interactive algorithm
that minimizes the sum of squares of the residuals,
implemented through the SOLVER routine contained
in Microsoft Excel, using the formula proposed by
King (1995): P = 1/(1+ exp−r(LT−L50)), where P is the
relative frequency of mature individuals, L50 corre-
sponds to the size in which 50% of individuals are fit
for reproduction, r is the parameter related to slope
of the curve. The following analyses were performed
considering only the individuals that reached L50, i.e.
adult individuals, because they mobilize part of the
acquired energy to the reproductive process.

Reproductive effort and condition indices

The gonadosomatic index (GSI) was calculated for each
individual through the following equation: GSI = (GM ×
100)/BM. The hepatosomatic index (HSI) was calculated
to evaluate relationships between the reproductive
process and the liver weight from the following
equation: HSI = (LM/BM) × 100.

The length–weight relationship was estimated
through the power equation (Le Cren, 1951), BM = a ×
TLb, for females (BM= 0.0097 × TL3.046; r2 = 0.98; n =
190) and males (BM = 0.013 × TL2.9581; r2 = 0.986; n =
170), with the b parameter (slope) related to the rate
of weight gain as a function of length, used to calculate
the condition factor (K ). The condition factor (K ) was cal-
culated to relate energy reserves with body mass and
among of energy transferred to gonads: K = BM/TLb.

Feeding index

The stomach repletion index (RI) was used to assess
food activity. The index considers the stomach weight
ratio (SM) as function of the body mass (BM), (RI =
SM/BM × 100) (Santos 1978).

Food composition was expressed for each food item
as a percentage of index of relative importance (IRI)
developed by Pinkas et al. (1971), which described
the relative contribution of food items in the diet as
the calculation of the frequency of occurrence (%FO)
and percentage composition by number (%N ) and by
mass (%M ) (Berg, 1979; Hyslop, 1980; Clark, 1985).
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The IRI was calculated using the equation: IRI = (%N +%
M ) × %FO and expressed on a percent basis, such that
%IRI for a specific food category (IRIi) becomes:

IRIi = 100× IRIi/
∑n

i=1

IRIi

where n is the total number of food categories con-
sidered at a given taxonomic level (Cortés 1997).

Relationships between GSI, HSI and K were assessed
with an r-Pearson correlation coefficient. An analysis of
variance (ANOVA) and a post hoc Tukey test were
applied to compare GSI, K, HSI and RI averages
among the months for females and males, separately.

Results

Size structure

From the 360 examined individuals of C. leiarchus, 190
were females (TL = 205–486 mm, mean ± SD = 309 ±
59) and 170 were males (TL = 205–493 mm; mean ±
SD = 293 ± 58). The sex ratio was well-balanced (1.1
female:1 male) and did not differ significantly
between sexes (χ2 = 1.11, df = 9, P > .05), although a
non-significant trend for higher number of females
with TL > 290 mm was observed. Females with size
ranging between 290 and 319 mm TL were predomi-
nant in numbers (χ2= 8.89, df = 1, P < .05), whereas
males predominate in size ranging between 260 and
289 mm TL (χ2 = 6.36, df = 1, P < .05) (Figure 1).

Reproduction

Females in spawning capable phase occurred through-
out the year and were more frequent in August (46%),

from October to January (60–94%), and in May (76%),
indicating a long reproductive period. Males in spawn-
ing capable phase were recorded from August to May,
with the highest frequency between October and
December (75–90%) and in May (62%) (Figure 2).

Size at first maturation (L50) was 273 mm TL for
females and 243 mm for males. All individuals were
mature (L100) participating in the reproductive
process from 380 mm TL (females) and 360 mm TL
(males) (Figure 3). Spawning capable individuals were
recorded throughout the year with the gonadosomatic
index (GSI) differing significantly among the months for
both females (F = 5.86, P < .05) and males (F = 5.85, P
< .05). Three peaks in the GSI were found for both
sexes, with the more conspicuous peak being recorded
in August, between October and January, and in May
(Figure 4a,b).

The hepatosomatic index (HSI) for females changed
significantly (F = 3.90, P < .05) with the lowest values in
November, following by an increase until January, then
a decline until May (Figure 4c). For males, the HSI (F =
2.78, P < .05) also changed significantly with the lowest
values between July and November, a peak in January
and a decline until March (Figure 4d).

The condition factor (K ) changed significantly for
females (F = 9.97, P < .05), with the lowest values in
October, following by an increase in the following
months until reach a peak in January–March, and
decline until May (Figure 4e). For males, seasonal
changes were also recorded (F = 4.91, P < .05) with
the lowest values in August, October, March and June
(Figure 4f). Significant relationships were found
between GSI and HSI (r =−0.29, P = .001), GSI and
K (r =−0.52, P = .001) and HSI and K (r = 0.35, P = .001).

Figure 1. Frequency distribution of females (▪, n = 190) and males (□, n = 170) of C. leiarchus in the Sepetiba Bay from July 2013 to
June 2014. Numbers of individuals are indicated above the columns.
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Feeding

The stomach repletion index differed significantly
between the months for both sexes (F = 3.69, P < .05
for females; F = 5.03, P < .05 for males). The highest
values were recorded in September and April, and
the lowest in August, in November-December and
May (Figure 4g,h). Four food items were identified
through the stomach inspection, with a conspicuous
preference for teleost (Fish) (Table I).

Discussion

Our findings suggest that C. leiarchus presents a mixed-
breeding strategy in relation to energy acquisition and

allocation to gonadal development. The decrease in
the condition factor (K ) and hepatosomatic index (HSI)
during the peaks of GSI, evidencing the use stored
body energy reserves during the spawning period con-
comitantly with a decrease of the feeding activity leads
to a capital breeders strategy. However, the multiple
spawning behaviour with asynchronic oocyte develop-
ment and indeterminate fecundity that were reported
by Silva et al. (2016) are characteristic of income bree-
ders. As some income breeders often demonstrate evi-
dence of supplementing their egg production with
stored energy to maximize fitness in response to fluctu-
ating environmental conditions (McBride et al. 2015),
we suppose the mixed-breeder should be a better
suited strategy for C. leiarchus.

Figure 2. Relative frequency of maturation phases of females (a) and males (b) of C. leiarchus in the Sepetiba Bay from July 2013 to
June 2014. Numbers of individuals are indicated above the columns.

174 J. P. DO CARMO SILVA ET AL.



The strategy of acquisition and allocation of energy
was first proposed by McBride et al. (2015), that
named capital breeders for those species in which
reproduction is financed using stored capital (sensu Ste-
phens et al. 2009), whereas income breeders were those
that the use of concurrent intake to pay for a reproduc-
tive attempt. The mixed breeders comprise those fishes
that although with asynchronous oocyte development,
appear predisposed to income breeding, but with evi-
dence of supplementing their egg production with
stored energy during a wide reproductive season. One
example is the well-fed Japanese anchovy Engraulis
japonicus Temminck & Schlegel, 1846 that continues
to spawn for a few weeks if starved – demonstrating
some availability of capital stores – but spawning fre-
quency, batch fecundity andegg sizedeclined (Kawagu-
chi et al. 1990). Also, the albacore tuna, Thunnus
alalunga (Bonnaterre 1788) involves mainly stored
energy for reproduction with supplementary energy
derived from feeding for the later gonadal development
during the spawning season (Dhurmeea et al. 2018).

Other species of the genus Cynoscion that exhibit
multiple spawning and asynchronic oocyte develop-
ment, also shown evidences of using stored energy
from the body during the spawning period. For

example, Cynoscion nebulosus (Cuvier, 1830) has low
condition during the spawning activity in the Chesa-
peake Bay (Lowerre-Barbieri et al. 1996). Roumillat
and Brouwer (2004) reported an association between
a decrease in oocyte size and condition of spawning
females over the course of the spawning season,
which could suggest a mixed-breeding strategy.
However, this behaviour seems not to be a common
feature for the genus, since Cynoscion guatucupa
(Cuvier, 1830) showed high condition factor during
the spawning period (Militelli and Macchi 2006) in
the coastal waters of Argentina–Uruguay, an indication
of income breeders. Therefore, a high plasticity of the
Cynoscion genus regarding the capital-income
breeder strategy during the reproductive cycle seems
to occur.

The wide reproductive period of C. leiarchus was
confirmed in this study as indicated by the GSI, with
maximum spawning activity in August, between
October and January, and in May. Several authors
related the multiple spawning as an adaptive response
to environmental variations to synchronize the release
of gametes with the food availability, thus maximizing
the survival of recruits and juveniles (Winemiller and
Layman 2005; Fonteles-Filho 2011; Silva et al. 2016) or

Figure 3. Size at maturity of females (a) (L50 = 273 mm) and males (b) (L50 = 243 mm) of C. leiarchus in the Sepetiba Bay from July
2013 to June 2014.
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to avoid interspecific competition for limited resources
between closely related species (Wootton 1992; Amar-
asekare 2003). Other species of Cynoscion genus also
have wide spawning season with multiple batches,
such as C. nebulosus (Cuvier, 1830) from the Golf
coast of Mississippi (Brown-Peterson and Warren
2001) and from the South Carolina (Roumillat &
Brouwer 2004), Cynoscion othonopterus (Jordan &
Gilbert, 1882) from the California Gulf (Gherard et al.
2013), Cynoscion jamaicensis (Vaillant & Bocourt, 1883)
from the Venezuela coast (Marcano and Alió 2001),
and C. guatucupa (Cuvier, 1830) from the southern Bra-
zilian coast (Vieira and Haimovici 1997) and from the
Argentinian–Uruguaian coast (Militelli and Macchi

2006). These indicate that a wide reproductive period
is a common feature for this genus.

The inverse relationship between both the HSI and K
with the GSI suggests the mobilization of hepatic
energy and body reserves to gonadal development
during spawning season. Changes in HSI indicate the
role of the hepatic reserves as source of energetic
resource for the reproductive activity (Alonso-Fernan-
dez and Saborido-Rey 2012), to ensure ovarian matu-
ration even at low rates of energy intake (Allen and
Wootton 1982). Several reproductive studies of Cynos-
cion genus generally refer only to the condition factor
as an indicator of body energy reserves (Lowerre-Bar-
bieri et al. 1996; Roumillat and Brouwer 2004; Militelli
and Macchi 2006; Lowerre-Barbieri 2009). Although
condition factor is often used to determine the
amount of mass in the individual and correlated to
energy reserves (Alonso-Fernandez and Saborido-Rey
2012), this is not always completely true because
changes in condition may indicate shifts in all the con-
stituents of body composition, not only in energy
reserves (Schulte-Hostedde et al. 2005). Alonso-Fernan-
dez and Saborido-Rey (2012) found that energy

Figure 4. Monthly variation of mean gonadosomatic (GSI) and hepatosomatic indices (HSI), condition factor (K) and stomach
repletion index (RI) of females (a, c, e, g) and males (b, d, f, h) of C. leiarchus in the Sepetiba Bay from July 2013 to June 2014.
Vertical lines represent the standard errors.

Table I. Frequency of occurrence (%FO), numerical percentage
(%N), mass (%M), and Index of Relative Importance (%IRI) of
food items from C. leiarchus collected in the Sepetiba Bay.
Itens % FO % N % M % IRI

Teleost (Fish) 0.9865 0.8639 0.9423 0.9929
Clupeiform (Fish) 0.0270 0.0237 0.0301 0.0008
Decapod (Crustacea) 0.0946 0.0828 0.0262 0.0057
Isopod (Crustacea) 0.0338 0.0296 0.0015 0.0006
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reserves in pouting Trisopterus luscus (Linnaeus, 1758)
females are mainly associated with lipids stored in
the liver. Dominguez-Petit and Saborido-Rey (2010)
examining changes in energy storage of the European
hake (Merluccius merluccius, L. 1758) found that the liver
has more energy density compared with gonads and
muscles, and that energy reserves are recovered
during the spawning season because food availability
is relatively constant all year round. Overall, the HSI
has been reported as a more accurate condition
index to measure the energy reserves of fish compared
with other indices (Shulman and Love 1999; Domin-
guez-Petit and Saborido-Rey 2010; Alonso-Fernandez
and Saborido-Rey 2012). In the present study, both
indices had similar patterns indicating the use of
stored energy reserves during the spawning season
and corroborating the mixed-breeding strategy for
C. leiarchus.

A slight trend for female predominance was
observed in large-sized individuals (>290 mm TL) in
the Sepetiba Bay. Predominance of large females
occurs in areas plenty of feeding resources (Nikolsky
1969) or could also be connected with higher natural
mortality of males and their shorter life span (Vetter
1988). Large females will carry large number and
greater oocytes, thus increasing survival rates (King
1995). The predominance of females in the highest
lengths for species of the genus Cynoscion was also
observed in other studies such as in C. nebulosus
from the southern Texas (Brown-Peterson et al. 1988)
and C. othonopterus in the California Gulf (Gherard
et al. 2013). The significant positive relationship
between fish size and fecundity indicate the maximiza-
tion of oocyte production. This could also be due to
food availability, since some species are able to com-
pensate for inadequate energy stores with simul-
taneous food consumption (Henderson et al. 1996).

We determined the size at the first maturation to
ascertain the individuals that are in the reproductive
process. Females reached size at first maturation (L50)
at 273 mm TL and males at 243 mm TL. These
findings slightly differ from other studies, such as the
case of smaller females of C. nebulosus in the Missis-
sippi Gulf Coast (L50 = 230 mm TL, Brown-Peterson
and Warren 2001) and South of California coast (L50 =
248 mm TL, Roumillat and Brouwer 2004), and larger
females of C. guatucupa in the southern Brazilian
coast (L50 = 346 mm TL, Vieira and Haimovici 1997)
and of C. othonopterus in the California Gulf (L50 =
277 mm TL, Gherard et al. 2013). Such differences can
be attributed mainly to reproductive tactics that may
exhibit spatial and temporal variations related to local
biotic and abiotic environmental conditions.

Fish is the main source of energy supporting
C. leiarchus in the Sepetiba Bay, with predominance
of teleost. The behaviour of C. leiarchus for feeding
on teleosts was reported by Guedes et al. (2015) refer-
ring to juveniles and subadults individuals (TL = 57–
218 mm), therefore below the size at first maturity.
The perennially of the diet has a direct influence on
the population dynamics that keeps the population in
equilibrium and maximize production (Fonteles-Filho
2011). Therefore, it is reasonable to hypothesize that
stabilization on diet (Teleost guild) of C. leiarchus
before the first maturation contributes to maximize
the energy expenditure for the future reproductive
success.

This study provides the first information about the
energy acquisition and allocation to the reproductive
process of C. leiarchus in the southeastern Brazilian
coast. This species exhibits a mixed-breeding strategy
characterized by using stored body energy reserves
during the spawning period associated concomitantly
with a decrease of feeding activity, multiple spawning,
indeterminate fecundity and asynchronic oocyte devel-
opment. This pattern was not confirmed as a common
feature for the genus Cynoscion, suggesting a high
plasticity of this group of fish.
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